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General equation for linear mechanisms
of catalyst deactivation
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Abstract

A rigorous approach to designing deactivation kinetic models is proposed, based on detail mechanisms of catalytic reaction and deactivation. It
is demonstrated that deactivation equations can be derived using the Bodenstain principle of quasi-steady state approximation. A general equation
applicable to any linear mechanism is suggested. Several examples are given regarding various reaction mechanisms and deactivation.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

Widely used deactivation models are either partly or com-
letely empirical. They are classified as one of two types:

. The Levenspiel models [1] expressed in terms of relative
activity a:

a = r

r0 ,
da

dt
= −ψ(C, T )ad (1)

where r, r0 are the current and initial reaction rates.
. The Froment models [2] which are given in terms of coke

concentration Cc:

Φ(Cc) = r

r0 ,
dCc

dt
= −φ(C, T,Cc) (2)

unctionsΦ(Cc) are traditionally represented in several standard
orms:

− γCc, (1− γCc)−1, exp(−γCc) (3)

the numbers of active sites involved in the limiting stages of the
main and deactivation reactions. Marin et al. [4] have developed
a rigorous model of deactivation by coke in terms of active sites
coverage and pore blockage.

In this paper, the rigorous deactivation kinetic model is rep-
resented in a general form applicable to any linear mechanism.
First of all, the proposed model has a definitive structure of
function f(C,T) in Eq. (1). A special function of relative activ-
ity ϕ(a) = (a− aS)/(1− aS) has been derived for the case of
reversible deactivation.

1.1. Quasi-steady state condition for deactivation

The principle of quasi-steady state was formulated by Boden-
stain and Semenov that is widely used in chemical kinetics.
Frank-Kamenetsky formulates the mathematical condition of
quasi-steady state approximation [5]. This idea is also the base
of Temkin–Horiuti theory of stationary catalytic reactions [6].
The problems of catalytic reaction under steady state and quasi-
steady state conditions are analyzed in detail in monographs of
However, it is possible to derive the rigorous models in terms
f both parameters a and Cc. In particular Corella and Asua [3]
ave found that in Eq. (1) d = (m + h− 1)/m, where m and h are

Kiperman [7] and Yablonskii et al. [8].
In accordance with [8] “. . .during the reaction, the intermedi-

ates concentrations are functions of observable substances, and
are slaved to their values as though stationary ones”, it follows
that the concentration of intermediate (coverage, Θj) changes
f
n
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aster than concentration of reagents (Ci). Nevertheless, it does
ot mean that dΘj/dt� dCi/dt. On the contrary, the quasi-steady
tate condition is often formulated as dΘj/dt≈ 0. Such a duality
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comes from the fact that the right part of equation forΘj is always
the difference of formation and consumption rates of Θj:

dΘj
dt
=

∑
(ri)form. −

∑
(ri)cons. (4)

Under quasi-steady state condition, this difference tends to zero
(in accordance with the nature of catalysis). The analogous val-
ues for reagents are equal to their formation rates.

A sufficiently complete analysis of physical backgrounds of
quasi-steady state in catalytic reactions has been carried out by
Yablonskii et al. [8], with the rigorous mathematical formula-
tion of minor parameter problem in the system of differential
equations.

As applied to deactivation, an important simplification of the
Bodenstain method was proposed by Semenov [9]. He supposed
that at quasi-steady state the conditions of Frank-Kamenetsky
will not be fulfilled for all intermediates (coverage). Then for
Bodenstain products the condition dΘj/dt≈ 0 is fulfilled, and
for others the differential equations should be written along with
equations for reagents.

Obviously, this type of quasi-steady state corresponds
entirely to the reaction accompanied by catalyst deactivation
phenomena. Here the only intermediates (coverages) Θj, that
take part in catalytic cycle, are Bodenstain products, but others
ΘDi represent active sites are switch-controlled due to poison-
ing, coking or another type of deactivation.
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The one-route linear mechanism presented by the follow cat-
alytic cycle will be considered here:

(M1)

In steady state (fresh catalyst) the reaction rate (r0) is equal
to the rate of any step of the mechanism (r0

j ):

r0 = r0
j = wjΘ0

j − w−jΘ0
j+1 (7)

where wj , w−j are the weights of the chosen step in forward
and reverse directions.

The weight of step is defined as ratio (wj = rj/Θj) of step
rate and coverage that take part in this step. The corresponding
rules are given in [8]. For example in step:

A+ ZB = AZ+ B, r = kCAΘZB, w = kCA

This allows the simple derivation of the reaction rate equa-
tions using a different technique [6,8,10]. A general equation
w
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Then quasi-steady state conditions for catalytic reaction
ccompanied by catalyst deactivation can be presented as fol-
ows:

dΘj
dt
≈ dΘ0

j

dt
= 0, j = 1, ..., N;

dΘDi

dt
�= 0, i = 1, ...,M;

∑
Θj = 1−

∑
ΘDi (5)

The first equality in (5) means that quasi-steady state approx-
mation is valid for the reaction on both fresh catalyst (dΘ0

j/dt =
), and catalyst being deactivated (dΘj/dt≈ 0). This is of fun-
amental importance for the reaction on deactivating catalyst,
ecause gives the possibility to use the theory of stationary reac-
ions for derivation of reaction rate equations.

Besides, it is necessary to note that deactivation and self-
egeneration rates (rD, rR), are usually much lower than the
eaction rate (r), and in turn, the rate of catalyst aging (rA) is
ower than rate of deactivation:

� rD ≈ rR � rA (6)

This feature alone serves as a physical basis of quasi-steady
tate of the reaction on the catalyst being subjected to deac-
ivation. Due to this reason, there is the possibility to realize
ommercial catalytic processes, in spite of catalyst deactivation.

. Reaction rate at catalyst deactivation

Only linear mechanisms will be considered in this paper, in
hich the rates of reaction steps are linear with respect to the

urface intermediates (coverages).
as derived in [8] using graph theory:

0 =
∏
jwj −

∏
jw−j∑

iBfi +
∑
iBri +

∑
i

∑
Bmi

(8)

ts numerator is a difference of weight products of all forward
nd reverse steps, i.e. it corresponds to the mass action law. Its
enominator equals to the sum of carcass weights, which are
ormed by forward, reverse and by mixed steps in the reaction
echanism.
The equation of reaction rate under catalyst deactivation (r)

s now derived. From the definition of relative activity (a) one
an write:

(t) = r0a(t) (9)

This relation is universal and does not depend on reaction and
eactivation mechanisms. Thus, individual features of reaction
eflect only in functions r0(C,T) and a(C,T,t). This matter is at the
eart of the problem of “separable” and “non-separable” deac-
ivation kinetics that are widely discussed in literature, starting
ith Szepe and Levenspiel [11].
We claim that the necessary condition of “separable” kinetics

s quasi-steady state condition. If it is not true then deactivation
inetics are not applicable, and then reagents and intermediates
qually determine the process dynamics.

In order to substantiate the reaction rate equation, the follow-
ng scheme is considered:

(M2)
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Here r is the reaction rate, rD the rate of deactivation; ΘD is
deactivated part of surface (or active centers).

Similarly to (7) one can write for the reaction rate:

r = rj = wjΘj − w−jΘj+1 (10)

Under deactivation, due to quasi-steady state condition (5):∑
Θj = 1−ΘD(t) (11)

whereas at t = 0:
∑
Θ0
j = 1, sinceΘD(0) = 0. Then, using results

of [8–10], one can show that in a linear mechanism for any
coverage the following relation is valid [12–14]:

Θj(t) = Θ0
j [1−ΘD(t)], j = 1, ..., N (12)

Substituting (12) in (10) we obtain that r = (wjΘ0
j −

w−jΘ0
j+1)[1−ΘD(t)].

Finally, taking into account (7) we have for the reaction rate
on deactivating catalyst:

r(t) = r0[1−ΘD(t)] (13)

From the comparison of this equation with (9) one can con-
clude that

a(t) = 1−ΘD(t) (14)
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steam and oxygen are usually used for the purpose of self-
regeneration, increasing the operating cycle by a factor of 102

to 103. They prevent or inhibit catalyst poisoning and coking in
the processes of paraffins isomerization and naphtha reforming
(H2); olefins dehydrogenation and isomerization (H2O); oxida-
tive dehydrogenation (O2).

Thus, deactivation is considered as partly reversible process.
However, self-regeneration step (rR) is not strictly the reverse
step of deactivation (rD). For example ifΘj is the initial interme-
diate in deactivation step (Θj→ΘD), in self-regeneration step
another intermediate can form (ΘD→Θj+1 or ΘD→Θ0).

The deactivation equation for scheme (M3) is

dΘD

dt
= wDΘj − wRΘD (15)

Certainly, this equation is not useful in practice and it should
be rearranged. In order to carry out the rearrangement, two ques-
tions are of interest:

1. How to express the ΘD through measured values—relative
activity (a) and f(C,T)?

2. How to get rid of Θj in deactivation Eq. (15)?

The first question has a simple answer in the case of linear
mechanisms—Eq. (14), a = 1−ΘD. For the second question (7)
a 0

Θ

j

Θ
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ϕ
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So, for the reaction having linear mechanism, the reaction rate
under deactivation) can be represented in form of “separable”
inetics (Eqs. (9) or (13)).

It is necessary to note that these equations do not depend
bsolutely on the number of deactivation steps (ΘD formation)
nd on their mechanisms. Deactivation steps can be reversible
r irreversible, linear or nonlinear. Even when several deactiva-
ion phenomena are occurring (sintering, poisoning, coking) the
eaction rate Eq. (13) remains the same. Concrete deactivation
echanism becomes apparent only in deactivation kinetics, i.e.

ia the function a(C,T,t). So one can conclude that Eq. (13) is
alid for linear reaction mechanisms and any deactivation mech-
nisms.

. Rate of deactivation

Catalyst deactivation will be considered as a set of slow (in
ense of (5) and (6)) steps of formation and consumption of
eactivated centers (ZD) are presented by coverage ΘD. The
ollowing scheme may be used for visualization:

(M3)

here rD, rR are rates of catalyst deactivation and “self-
egeneration”.

The self-regeneration term is considered as a process of
enewal of active centers by action of some reagent during
he reaction, but not in regeneration period. This phenomenon
s prevalent in many commercial processes. Hydrogen, water
nd (12) are key relations. In according to (12) Θj = Θj (1−
D), and Θ0

j can be expressed through the rate and weight of

-th step Θ0
j = r0

j /wj . In turn, due to (4) r0
j = r0, then:

j = r0

wj
(1−ΘD) (16)

f j-th step of mechanism is reversible, then Θj = (r0/wjϕj)
1−ΘD). If all mechanism steps, except limiting one (j-th), are
n equilibrium, then:

j = ϕ = 1−
∏N
i C

νi
i

KP

here ϕj, ϕ are equilibrium parameters of step and of reac-
ion. So, further analysis can be made for irreversible reactions
ϕj = 1).

Taking into account (16) we obtain for (15):

dΘD

dt
= r0

wj
wD(1−ΘD)− wRΘD (17)

t can then be easily written in terms of relative activity. Since
rom (14) a = 1−ΘD, then da =−dΘD and, therefore:

da

dt
= − r

0

wj
wDa+ wR(1− a) (18)

This equation is valid as a model of reversible deactivation
inetics for any one-route reaction occurring via linear mech-
nism. The concrete mechanism determine forms of reaction
ate (r0) and weight of steps (wD, wR, wj) that are functions of
emperature and concentrations.
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Example 1 (Selective hydrogenation of alkynes). The follow-
ing demonstrates how the deactivation equation can be derived
for selective hydrogenation of acetylene in ethene pyrolysis frac-
tion:

(D)
condensation products←

(A)
C2H2 +

(H)
H2

(E)
→ C2H4

Deactivation occurs as a result of condensation product for-
mation, so-called “green oil”. Partial self-regeneration is pro-
vided by hydrogen. The simplified mechanism is

(1) C2H2 + Z↔ C2H2Z, r1 = k1CAΘ0 − k−1ΘA
(2) H2 + C2H2Z→ C2H4Z, r2 = k2CHΘA, w2 = k2CH
(3) C2H4Z↔ C2H4 + Z, r3 = k3ΘE − k−3CEΘ0
(4) C2H2 + C2H2Z→ ZD, rD = kDCAΘA, wD
= kDCA (deactivation)

(5) H2 + ZD→ C2H2Z+ C2H2, rR = kRCHΘD, wR
= kRCH (self-regeneration)

For visualization, the mechanism is represented in graphical
form:
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Eq. (19) becomes zero order with respect to CA, and the deacti-
vation Eq. (20) becomes first order:

r0 = k2CH, −da

dt
= kDCAa− kRCH(1− a) (21)

Example 2 (Paraffins dehydrogenation). The process of paraf-
fins dehydrogenation (butane and isopentane) is intended for
production of synthetic rubber monomers–butadiene and iso-
prene. The reactions are usually carried out on chromia–alumina
catalysts in fluidized bed reactors. Catalyst deactivation is
caused by coking. The main reactions are dehydrogenation,
cracking and coking:

(M5)

The simplified mechanism can be presented in form of graph
(M6), where Θi is coverage corresponds to reagent, rj the reac-
tion rate, Θ0 the fraction of vacant sites on the surface, ΘD the
fraction of surface coverage by coke, bi is the adsorption equi-
librium coefficient.
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(M4)

When the second step is limiting and first and third ones are
n equilibrium:

0 = k2bACACH

1+ bACA + bECE

= k2bACACH

D
, D = 1+ bACA + bECE (19)

The deactivation equation (4-th and 5-th steps) have a form:

dΘD

dt
= kDCAΘA − kRCHΘD.

n according with (16) ΘA = (r0/k2CH) (1−ΘD), therefore:

dΘD

dt
= kDCA

k2CH
r0(1−ΘD)− kRCHΘD

ince a = 1−ΘD, and substituting r0 from (19), we obtain:

da

dt
= kDbAC

2
A

D
a− kRCH(1− a) (20)

Note that deactivation rate has second order kinetics with
espect to acetylene, whereas the reaction rate is first order.
ny simplification in the mechanism of the main reaction

implifies in turn the deactivation equation. For example, at
ow temperature the acetylene adsorption strength is higher, so
+ bECE� bACA and therefore D≈ bACA. Then reaction rate
(M6)

Self-regeneration is practically absent in these processes,
hich are carried out in the reactor-regenerator system with

atalyst circulation. The residence-time consists of 6–12 min in
eactor, and 12–20 min in regenerator.

It is supposed in [15], that all the reactions are proceed on
he one type of active sites, and therefore the coking decreases
ll the reactions equally, without changing in selectivity.

Assuming all adsorption steps to be in equilibrium, the reac-
ion rate equations on the fresh catalyst (r0

j ) are readily expressed
s

0
1 =

k1b1P1

D
, r0

2 =
k2b2P2ϕ

D
, r0

3 =
k3b1P1

D
,

0
4 =

k4b2P2

D
, D = 1+ b1P1 + b2P2 + b3P3 + b4P4,

= 1− P3PH2

P2KP
(22)

here Pi is the partial pressure and KP is the equilibrium con-
tant.
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Because of uniform catalytic surface, the relations (12)–(14)
are valid for all the reactions of mechanism (M6):

Θi = Θ0
i (1−ΘD), rj = r0

j (1−ΘD), a = 1−ΘD.

Deactivation rate is proportional to the rate of coking that
is determined by diolefin concentration (butadiene or isoprene)
rD = kDP3Θ3, therefore:

−da

dt
= dΘD

dt
= kDP3Θ3 = kDP3Θ

0
3(1−ΘD) = kDP3Θ

0
3a.

(23)

Due to the equilibrium of adsorption steps Θ0
3 = b3P3/D.

In commercial conditions at high temperature (500–580 ◦C),
the adsorption does not inhibit the reaction, therefore D≈ 1.
Besides, second reaction is close to thermodynamic equilibrium
(ϕ→ 0 and r0

2 ≈ 0), therefore diolefin partial pressure (P3) may
be expressed through the olefin and hydrogen P3 = P2KP/PH2.

Finally P2/PH2≈ 1, due to the shift of equilibrium to the left.
Then Θ0

3 ≈ b3KP and after substitutions the deactivation Eq.
(23) becomes simple but unusual:

da

dt
= −kDb3K

2
Pa (24)

Note that since parameters (kD-deactivation constant, b3-
adsorption coefficient, KP-equilibrium constant) are not depen-
dant on concentration, then deactivation rate (24) should not
d
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Fig. 1. The illustration of stationary (residual) activity aS.

of deactivation is also decreased, but the rate of self-regeneration
practically is not changed.

This is assumed to occur at the time t = tS: rD(tS) = rR(tS).
Then one can write with some inaccuracy (ε) that corresponds
to experimental error: ΘD(tS) = (ΘD)S± ε and a(tS) = aS± ε.

For determining of aS it is necessary to equate the right part
of Eq. (18) with zero: wR(1− aS)− r0aSwD/wj = 0, then:

aS =
[

1+ r0

wj

wD

wR

]−1

, at t ≥ tS (25)

It is then possible to express the wR through aS and substitute
in (18). After simple transformation, Eq. (18) takes the form:

da

dt
≈ − r

0

wj
wD

a− aS

1− aS
, at t < tS (26)

From the mathematical point of view, such a substitution is
not strictly correct, since the functionwR in Eq. (18) is expressed
through the asymptotic solution of this equation. However, it
becomes possible ifwR ≈ const, that is applied in most practical
cases.

For example, in the process of acetylenes hydrogenation in
pyrolysis fractions (mentioned above), the self-regeneration is
provided by hydrogen. Because of hydrogen excess its con-
centration varied weakly, and therefore in (21) wR = kRCH ≈
const. Then k C can be expressed through a , and deactivation
e

r
p

w

h
g

F
a
a

epend on space velocity or contact time. This conclusion fol-
ows from only thermodynamic data and rather simple mecha-
ism, however, it almost agrees with experimental data [16].

On the other hand, all mentioned parameters depend on tem-
erature, therefore, the effective deactivation constant k∗D =
Db3K

2
P is characterized by unusual high effective activation

nergy:
∗ = ED −Q3 + 2�H2 = 60–65 kcal/mol

here ED is the coking activation energy, Q3 heat of diolefin
dsorption, and �H2 is heat of reaction of diolefin formation.

Unusual sensitivity of catalyst deactivation to the temperature
ollows from the above considerations. Even small increases of
emperature can cause formation of “salamander” in a fluidized
ed containing coke and catalyst [17]. This example shows
vidently that deactivation kinetics becomes rather informative
hen the equation (especially f(C,T)-function) is derived, but
ot fitted only from the experiments.

. Approximate equation for reversible deactivation

Eq. (18) can be considered as a final formula for linear
echanisms. However, it is rather difficult in practice to fit the

elf-regeneration parameters. Sometimes, the form of function
wR) is unknown. The termwR is eliminated from the equations
y introducing the term of “residual” activity (aS).

This “stationary activity” will be defined as the activity value
hat is achieved, when the rate of deactivation (rD) and rate of
elf-regeneration (rR) become equals to each other.

It is inevitable that aS≈ const must be established for
eversible deactivation, since during catalyst poisoning the rate
R H S
quation takes a form:

da

dt
= −kDCA

a− aS

1− aS
(27)

Eq. (26) may be thought of as an approximate equation of
eversible deactivation. It was derived firstly in [12] and was
roved in addition in [13,14].

Concurrently and independently, similar forms of equation
ere proposed in works [18–20]:

da

dt
= −ψ(C, T )(a− aS)n or

da

dt
= −ψ(C, T )(an − anS)

owever, any analytical derivation of these equations and
rounds of function ψ(C,T) were made.

The facility of approximate Eq. (26) is clearly seen even from
ig. 1. The value of aS is easy to evaluate from the imaginary
symptote of deactivation curve, and kD value—from its slope
t t = 0.
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Fig. 2. Reforming catalyst deactivation during dehydrogenation of CH contain-
ing MCP [25]. Points: experiments; lines: according to Eq. (30).

Such a prior estimations are very useful for analysis of exper-
imental data.

Example 3 (Dehydrogenation of naphthenes). The reaction
of naphthenes dehydrogenation into aromatics is considered,
taking specifically the following examples: cyclohexane to ben-
zene (C6H12 = C6H6 + 3H2) or methyl cyclohexane to toluene
(C6H11CH3 = C6H5CH3 + 3H2). These reactions are widely
used for investigation of supported metal catalyst. Besides, they
are main reactions in naphtha reforming process over Pt/�-
Al2O3 or Pt–Re/�-Al2O3, Pt–Sn/�-Al2O3.

The mechanism and kinetics of this reaction have been inves-
tigated in detail on several catalysts and under different condi-
tions [21–24]. The simplified mechanism [21] and correspond-
ing kinetic equation [21,23] are presented below:

1. N+ Z = AZ+ 3H2
2. AZ = A+ Z

r0 = k1PN

1+ bAPA
ϕ, ϕ = 1− PAP

3
H

KPPN
(28)

Here PN, PA, PH are partial pressure of naphthenes, aromatics
and hydrogen, k1 the reaction rate constant of limiting step, bA
the adsorption coefficient, and KP is the equilibrium constant.

Under typical reaction conditions (T = 300–350 ◦C, H2/CH
r
b
p
t
c

r
b
e
[

•
•
•
•

Reaction conditions: T = 360 ◦C, P = 1 bar, λ= 5 mol/mol,
gradientless reactor.

Such a condition provides only cyclohexane dehydrogena-
tion, and MCP conversion does not exceed 1–3%. However,
only MCP causes catalyst deactivation [27,28].

Under the experimental conditions, the kinetic equation (28)
is reduced to a first order dependence:

r0 = k1PCH

1+ bBPB
ϕ ≈ k1PCH (29)

since at T > 320 ◦C the reaction is irreversible (ϕ = 1), and the
influence of benzene adsorption is negligible (bBPB� 1).

The reaction and deactivation mechanism can be presented
as follows:

(M7)

The deactivation equation (26) readily follows using this
scheme. Since wj = w1 = r0, then:

da ≈ − r
0

wD
a− aS = −kDPMCP

a− aS (30)

r
o

C

P
P

a

b
t
d
p
s
r

f
t
j
k

b
(

a
d
i

atio λ= 3–5 mol/mol), catalyst deactivation is not observed. It
ecomes noticeable in the inert gas atmosphere [23], or in the
resence of other hydrocarbons, for example methylcyclopen-
ane (MCP). The last case corresponds to reforming of naphtha
onsisting of naphthenes and paraffins.

Deactivation of dehydrogenation active sites has a typical
eversible character [24–26] due to the catalyst self-regeneration
y hydrogen. Fig. 2 illustrates this fact and represents the influ-
nce of ionic platinum (Ptn+) on stability of reforming catalyst
25]. The reaction feed was:

Cyclohexane (CH): −65%
Methylcyclopentane (MCP): −25%
n-Hexane (n-C6): −7.5%
Benzene (B): −2.5%
dt w1 1− aS 1− aS

It was mentioned before that MCP conversion is in the
ange 1–3%, therefore kDPMCP ≈ k∗D ≈ const. For experiments
f Fig. 2 the following parameters of Eq. (30) were obtained:

atalyst k∗D (min−1) aS

t0 + Ptn+/�-Al2O3 0.02 0.40
t0/�-Al2O3 0.03 0.25

An important feature of the equation is, that parameters k∗D
nd aS do not change with time. Then one can write:

da

dt
= −k∗D

a− aS

1− aS
= −kE(a− aS)

In this form the solution of the equation is convenient,
ut it is not quite correct for application because of effec-
ive constant kE = k∗D/(1− aS) may not obey the Arrhenius
ependency. In accordance with (25) aS is affected by tem-
erature dependencies of the rates of reaction, deactivation and
elf-regeneration. In the last example, as it follows from (30),
0wD/wj = kDPMCP, andwR = kRPH. Therefore, the equation
or aS = 1/(1 + kDPMCP/kRPH), and since PMCP/PH = γ ≈ const,
hen aS = 1/(1 + γkD/kR). Parameters kD and kR are sub-
ected to Arrhenius dependencies: kD = k0

D exp(−ED/RT ),
R = k0

R exp(−ER/RT ), therefore aS(T) will be determined
y activation energies of deactivation and self-regeneration
ES = ED−ER).

An example of ED = 30 and ER = 10 kcal/mol that illustrates
typical dependency aS(T) is presented in Fig. 3. It leads to

ecreasing of effective activation energy from 30 kcal/mol (for
ntrinsic constant kD) to 15 kcal/mol (for effective constant kE).
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Fig. 3. The illustration of temperature dependency of aS and kE [43].
ED = 30 kcal/mol; EE = 15 kcal/mol; ES = 20 kcal/mol.

5. Deactivation and aging

The process of catalyst aging is considered as slower than
deactivation, so the irreversible decrease of catalyst activity takes
place during the operation. The difference of aging and deactiva-
tion becomes apparent in cyclic processes. Inside each cycle, the
catalyst is deactivated in the product period, and is renewed in
regeneration period, whereas aging appears as falling of activity
from cycle to cycle. The analysis of similar processes has been
made by Fedotov and coworkers [29].

In processes having an extended operation of 0.5–1 year
(reforming, hydrotreating) the deactivation and aging occur dur-
ing one cycle. However, the initial fast falling of activity (deac-
tivation) consists of only a small part of the catalyst life, and
can be considered as quasi-steady state with respect to aging.
Such an assumption allows simplification of the analysis of
deactivation [12,13]. The process follows the scheme shown
below:

(M8)

w
t
r

e

Θ

Therefore:

dΘD

dt
= r0

wj
wD(1−ΘD −ΘA)− (wR + w′A)ΘD (33a)

dΘA

dt
= r0

wj
wA(1−ΘD −ΘA)+ w′AΘD (33b)

In this case t = tS also exists, at which deactivation and self-
regeneration rates become equal rD = rR and dΘD/dt = 0. How-
ever, here ΘD(tS) is the maximum of function ΘD(t). As for
active surface dynamics, at t > tS the transit of temporary inactive
sites (ΘD) into absolutely inactive (ΘA) takes place. Therefore,
at firstΘD is increased (dΘD/dt > 0 at t < tS), and then decreased
(dΘD/dt < 0 at t > tS).

Taking into account that a = 1−ΘD−ΘA, the equation for
relative activity one can obtain from the system (33a) and (33b).
It reduces to second order differential equation. For example at
wA = 0:

d2a

dt2
+

(
r0

wj
wD + wR + w′A

)
da

dt
+ r0

wj
wDw

′
Aa = 0

It is inconvenient to analyze and especially to apply this equa-
tion. Fortunately, the system (33a) and (33b) can be splitted in
two independent equations in the case of condition (6):

rA � rD ≈ rR � r

d
t
t
w

5

a

T
(

o

t
a

a

w

hereΘD,ΘA are the deactivated and aged surfaces, r the reac-
ion rate, rD, rR the rates of deactivation and self-regeneration,
A, r′A are rates of aging.

Then according to scheme (M8) the system of deactivation
quations is

dΘD

dt
= wDΘj − (wR + w′A)ΘD,

dΘA

dt
= wAΘj + w′AΘD. (31)

Here, according to quasi-steady state and similarly to (16):

j = r0

wj
(1−ΘD −ΘA), a = 1−ΘD −ΘA (32)
It means that the reaction is quasi-steady state with respect to
eactivation and deactivation is quasi-steady state with respect
o aging. So, one equation will describe the fast period of deac-
ivation, and another—slow period of aging. The time t = tS, at
hich rD≈ rR, is the border of these periods.

.1. Equation for deactivation period

At t < tS, due to quasi-steady state, one can write taking into
ccount (32):

dΘA

dt
� dΘD

dt
and da ≈ −dΘD (34)

hen at interval [0, tS] dΘA/dt≈ 0 and a≈ 1−ΘD. Summing
33a) and (33b) we obtain for a:

da

dt
≈ − r

0

wj
(wD + wA)a+ wR(1− a) (35)

After transformation, using term of stationary activity aS, we
btain the equation like (26):

da

dt
≈ − r

0

wj
(wD + wA)

a− aS

1− aS
, at t = 0, a = 1 (36)

The difference arises from the fact that total rate of deactiva-
ion includes weights of deactivation (wD) and aging (wA) steps,
nd also in expression of “residual” activity aS:

S = wR

(r0/wj)(wD + wA)+ wR
(37)

It is difficult in practice to determine the time t = tS, after
hich Eq. (36) is no longer applicable. At extended times of
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Fig. 4. Falling of activity under deactivation and aging. Solid lines: exact model
(32), (33a) and (33b); dashed lines: approximate model (36) and (38); tS≈ 0.3,
aS = 0.284.

operation the experimental data indicated that aS �= const and
slightly decreased. If such a decrease consists of more than
5–10% then the deactivation model should be completed by use
of an aging equation.

5.2. Equation for aging period

At t > tS the parity of deactivation and self-regeneration rates
comes true (rD≈ rR), therefore, further decrease of activity hap-
pens only due to the aging. Then dΘD≈−dΘA and, equating
the right-hand side of (33a) and (33b) we obtain the correlation
of a and ΘD in the aging period:

a = wR

(r0/wj)(wD + wA)
ΘD

This expression is differentiated, dΘD/dt substituted from
(33a) and wR expressed through aS from (37). Then we obtain
a deactivation equation for aging period, i.e. at t > tS:

da

dt
≈ −

(
r0

wj
wA

aS

1− aS
+ w′A

)
a, at t = tS, a = aS

(38)

Thus, Eqs. (36) and (38) approximate the system (33a) and
(33b) and allow us to analyze separately deactivation and aging
processes.

An example of such approximation is presented in Fig. 4. It
w
α

α

6

i
r
e
D
[
f

tulate that deactivation rate may be presented as a product of
functions:

−da

dt
= f (C, T )ϕ(a) (39)

where f(C,T) is the function related to reaction condition and
ϕ(a) is the function of catalyst state (activity).

The power mode of functions was postulated:

f (C, T ) = kDC
n
i , ϕ(a) = ad

where n and d values have to be evaluated from experiments.
Such an empirical form was widely used for the fitting of

experimental data [19,23,32,33], as well as for optimization of
the processes accompanied by catalyst deactivation [34–36].

A considerable contribution to the rigorous ground of
power dependencies has been made by Corella and coworkers
[3,37,38]. They proved a formula for deactivation rate order (d)
with respect to activity:

−da

dt
= f (C, T )ad, d = 1+ h− 1

m
(40)

where m, h are the number of active sites involved in the limiting
steps of reaction and deactivation.

As for the function f(C,T), it traditionally considers to be
depending only on concentration of component causes deacti-
vation. In several works [23,39–42] a different form of function
f
f
l
h

d
r

−

t
k
t

f
(
(
p

t
s
Θ

as accepted in calculations that weights of steps are constants:
= 10.0, β = 4.0, γ1 = 0.1, γ2 = 0.3, where

= r0

wj
wD, β = wR, γ1 = r0

wj
wA, γ2 = w′A

. Equation structure and properties

The structure of equation of deactivation kinetics is rather
mportant from both formal and physical points of view. It
eflects a physical meaning of equation, its resolvability, param-
ters mutual effect, and the method of parameters estimation.
eactivation equation structure was examined in 50th by Maxted

30] and Wheeler [31]. The first attempt to justify the equation
orm has been made by Szepe and Levenspiel [11]. They pos-
(C,T) were derived for concrete mechanisms. However, general
orm of f(C,T) was not determined. Such substantiation was pub-
ished by Ostrovskii and coworkers in [12–14,43] and presented
ere.

As it follows from previous consideration and examples, the
eactivation kinetic equation for linear mechanisms is always
educed to the form:

da

dt
= fo(C, T ) fc(C, T )fa(a) (41)

where fo = r0/wj is a function depends only on the reac-
ion kinetics, fc = wDj the function determined by deactivation
inetics, and fa = (a− aS)/(1− aS) is a function depends only on
he catalyst activity.

An example of such a form is Eqs. (26) or (36) that is valid
or any reaction occurring via the mechanism in which all steps
including deactivation) are linear with respect to intermediates
Θj, ΘD). For structure visualization, Eqs. (26) and (36) can be
resented in the form:

(42)

It is clear from above consideration that in order to derive
he deactivation equation in form of (42) the only quasi-steady
tate condition (5) is sufficient. Indeed, the formulas (12) Θj =

0
j (1−ΘD) and (16)Θ0

j = r0/wj result from condition (5), are
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key relations provided “separable” character of Eqs. (26), (36)
and (42).

This allows the following supposition to be formulated: if
the reaction occurs via the linear mechanism and quasi-steady
state approximation is valid, then deactivation kinetics is always
reduced to the “separable” equations.

6.1. Concentration dependency

As it seen from Eq. (42) such a dependency is a product of
functions fo(C,T)fc(C,T). The question is—how substantial is
this improvement comparing with Eq. (39)?

From the formal point of view, Eq. (42) will reduce to (39)
after the opening fo and fc functions. However, Eq. (42) already
contains the information about the structure of f(C,T). It is impor-
tant for deriving the deactivation equation, and for the analysis
of physical meaning of parameters. Besides, the form of (42)
shows itself, how to obtain these functions based on stepwise
mechanism. Finally, the equation shows that deactivation rate
depends on concentration of reagents not only taking part in
deactivation fc(C,T), but also of reagents involving in the main
reaction fo(C,T).

Examples 1–3 confirm the influence of the reaction kinetics
on deactivation equations.

It is important that proposed equation contains the weight of
reaction steps (w ), but not the rates (r ), i.e. the intermediates
c
d
a
t

T
s
p
w
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e

e
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d
j
r

e
3

d
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d
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Here k-th step necessarily should be in equilibrium. If it is
irreversible but slow, then it becomes deactivation step. If it is
irreversible but fast, then catalyst deactivates immediately, and
the quasi-steady state consideration makes no sense.

Taking into account this requirement, it is easy to show that

Θk =
(
wk

w−k

)
Θj = KkΘj

where Kk is the ratio of weights of k-th step.
Now Θj may be expressed through the reaction rate Θ0

j =
r0/wj , and deactivation equation may be wrote as early:

−da

dt
≈ r0

wj
KkwD

a− aS

1− aS
(43)

In order to illustrate this case, the reaction of cyclohexane (CH)
dehydrogenation in the presence of MCP may be considered (see
Example 3). There is the assumption that during MCP adsorp-
tion on the active Pt sites (Θ0) deactivation occurs not at once
(as accepted in scheme (M7)), but via the formation of surface
intermediate of methylcyclopentene (ΘM). It does not take part
in the reaction, but blocks the active sites due to the reaction like
Diels–Alder. Then the scheme (M7) transforms as follows:
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j j

oncentrations (Θj) already are excluded from the equation. This
elivers us to derive the equation from the mechanism each time,
nd give the possibility to write the equation at once having only
he net of steps.

Let consider now some characteristics of fo and fc functions.
he function fc =

∑
wDi reflects the influence of deactivation

teps on activity falling. It has a traditional form and is pro-
ortional to the concentration of catalyst poison (CP). Usually
Di = kDi(CPi)n, and therefore fc(C,T) obey to Arrhenius tem-
erature dependency.

The influence of the main reaction kinetics on deactivation
ate is more complicated, that is reflected in function fo(C,T).
ote thatfo = r0/wj = Θ0

j represents the maximal surface cov-

rage by substance involved in deactivation step. Since Θ0
j is

xpressed through the reaction rate (r0) and weight of step (wj),
n which Θj is consumed, then deactivation rate almost ever
epends on (r0). The word “almost” is not used by chance. When
-th step coincides with the reaction limiting step (j = l), then
0 ≈ wl ≡ wj , therefore r0/wj ≈ 1 and the reaction kinetics is
xcluded from deactivation equation. It take place in Example
, where in Eq. (21) r0/w2 ≈ 1 and it includes only fc = kDCA.

A separate consideration should be done in the case when the
angling vertex of the reaction graph takes part in deactivation
echanism. It means that the intermediate is responsible for

eactivation, is not involving in the catalytic cycle, but is in
equilibrium” with other intermediate.

(M9)
(M10)

In this mechanism, ΘM is a dangling vertex; therefore, the
alue of ΘM cannot be expressed directly through the reaction
ate. However, since formation ΘM and its hydrogenation steps
re in equilibrium, then k3PMCPΘ

0
0 = k−3PHΘ

0
M, from which

0
M = Θ0

0bMPMCP/PH, where bM = k3/k–3 is the constant of step
quilibrium.

NowΘ0
0, that is involved in catalytic cycle, can be expressed

hrough the reaction rate Θ0
0 = r0/w1, and it gives Θ0

M =
r0/w1)bMPMCP/PH. The rate of deactivation in (M10) equals
o rD = kDPMCPΘM = kD PMCPΘ

0
M(1−ΘD), therefore we

btain similarly to (30):

da

dt
≈ −kDbM

P2
MCP

PH

a− aS

1− aS
(44)

It follows from the comparison of (30) and (44) that the
ew step changes significantly the equation of deactivation. The
eactivation order with respect to MCP is changed, and hydro-
en concentration not only affects the value of aS (see Example
), but also involves in Eq. (44). The temperature dependency of
eactivation rate also changes, since (kD)eff = kDbM and con-
equently (ED)eff = ED−QM, where QM is a heat of MCP
hemisorption.
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6.2. Temperature dependency

The influence of temperature on deactivation rate is rarely
analyzed in the literature. It comes from the fact that exper-
imental data are usually isothermal. Besides, in traditional
models having form f (C, T ) = kDC

n
i , the temperature influ-

ence does not go beyond the Arrhenius dependency kD =
k0

D exp(−ED/RT ).
However, in practice the more complicated influence of tem-

perature is observed, as Example 2 shows for the reaction of
paraffins dehydrogenation. Eq. (42) represents the feasible tem-
perature dependencies. It is seen from (42) that if the reaction
kinetics (r0) has Langmuir form (not power), then in traditional
deactivation model f(C,T) = (kD)effCn, the deactivation constant
(kD)eff will not obey the Arrhenius dependency. Eq. (20) may
serve as an example. Another reason for non-Arrhenius depen-
dency comes from self-regeneration (Fig. 3) when the equation
includes aS that also depends on temperature.

6.3. Activity dependency

In the case of linear mechanisms, the rate of deactivation
(da/dt) is proportional to the current value of (a). The activity
order more than one may arise only in nonlinear mechanisms
that have been proved by Corella and coworkers [3,37,38] (see
Eq. (40)).
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As it was demonstrated in this paper, in reversible deacti-
ation, caused by self-regeneration, the rate of deactivation is
roportional to (a− aS). At formal approach such a dependency
Figs. 1 and 2) may be described by power-mode function:
a/dt =−f(C,T)ad, where d > 1. For example in the case of Fig. 2
= 4 that leads to wrong interpretation of deactivation features.

. Conclusion

A general equation of catalyst deactivation kinetics has been
erived, which is applicable for any reaction having linear stage
echanism. The equation has a form of so-called “separable”

eactivation model. The rate of deactivation equals to the product
f thee functions:−da/dt = fo(C,T)fc(C,T)fa(a). fo(C,T) depends
nly on the main reaction steps of mechanism; fc(C,T) is deter-
ined by deactivation steps; fa(a) is a function of relative activ-

ty.
When deactivation is partly reversible (due to self-

egeneration by one of reagents), the function fa(a) includes
stationary” or residual activity aS. This parameter was defined
s the activity that is achieved when the rate of deactivation and
ate of self-regeneration become equals to each other.

In the case of simultaneous deactivation and aging the aS
ives the possibility to split the complex model in two indepen-
ent equations for deactivation and aging processes.
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